

Environmental and non-technical impacts of lean principles applied to offshore wind farms leanwind

28th September 2016

Mihaela DRAGAN
Environment & Planning Analyst, WindEurope

Project supported within the Ocean of Tomorrow call of the European Commission Seventh Framework Programme

Presentation outline

- Introduction
- Methodology
- Construction phase positive and adverse environmental impacts
- Mitigating wind farm construction impacts
- Social acceptance of offshore wind farm

Introduction

Objective: examine the environmental and non-technical impacts of lean principles applied to offshore wind farms with a particular focus on life cycle analysis.

- environmental impacts resulted from new foundation systems: fixed and floating, from installation activities, operation and maintenance strategies deployed as well as decommissioning activities.
- non-technical impacts refers to creation of local employment, local growth, training and skills as wells as synergies with other sea users.
- Community engagement for offshore wind farms.

Methodology

- EWEA proceedings 2010 to 2015 (sessions dedicated to environment and social acceptance)
- Scientific papers and journals
- Policy reports and studies
- EU funded projects
- Input from industry environmental experts

Positive environmental impacts of Offshore Wind Farms

- Effectively mitigating climate change, the single largest threat to biodiversity
- Trawling exclusion and impacts on fish
- Artificial reef effects
- Habitat enhancement
- Synergies with aquaculture

Trawling exclusion and impacts on fish

Ban on fishing, especially demersal trawling in the wind farm area is resulting in increased local fish populations.

Source: Shooting otter trawl in Thanet Wind Farm, Fisherman's voice, June 2014, Vol. 19, No. 6

Artificial reef effects

Jens Christensen. Common mussel on turbine structures at Horns Rev. Danish Offshore Wind - Key Environmental Issues

Habitat enhancement

- At Thanet (UK) offshore wind farm, marine research suggests that certain fish species, such as cod found shelter inside the farm.
- New hard substratum and the scouring protection led to the establishment of new species and new fauna.
- Wind farm acts as a new type of habitat with a higher biodiversity of benthic organisms

Synergies with aquaculture

Substructures installed in EU waters (end 2015)

Source: WindEurope

Range of applicability of the available foundation technologies

Foundation concepts and their associated impact upon local environment

Monopile

- Piling noise disturbance -highest
- Hydrodynamics and sedimentology
- Disturbance to sea bed
- Habitat loss
- Magnetic fields

Jackets

- Piling noise disturbance - high
- Hydrodynamics and sedimentology
- Disturbance to sea bed
- Habitat loss
- Magnetic fields

Gravity based

- Moderate underwater noise
- Hydrodynamics and sedimentology
- Disturbance to sea bed – dredging
- Habitat loss
- Magnetic fields

Floating

- No underwater noise from piling thus lower environmental impact
- Hydrodynamics and sedimentology
- Habitat loss
- Magnetic fields

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments Leanwind

Parameter	CGBFs	Monopiles	Tripods	Steel Jackets	Suction Caissons	Floating platforms	
	Good (332)	Good (1810)	Moderate (86)	Moderate (88)	Low (1)	Trial only (2)	
	All	Shallow	All	All	All	Deep	
	Good	Restricted	Restricted	Restricted	Moderate	Unknown	
	L	Н	Н	Н	L	Unknown	
	L	Н	Н	Н	Unknown	Unknown	
	Fav	Unfav	Fav	Fav	Low	Low	
Environmental Fffects/Impacts							
	Н) ، (L	Ĺ) м	L	
	L) н (Н	Н	L	L M	
	Н) м (Н	Н	Н	L	
	L	Н	L	L	L	L M	
	МН	М	МН	Н	Н	Negligible	
	Н) м (Н	Н	Н	L	
Decommissioning	L	Н	Н	Н	L	Н	

Source: Ian Reach, Principal Marine Ecologist, Marine Space

Example of detailed environmental impact: underwater noise

- Sensitive species
 - Certain fish (incl. eggs and larvae) and marine mammals
- <u>Disturbance</u>
 - Displacement
 - Behaviour reactions
 - Reduced predation success
- Damage, Mortality
- Population and Ecosystem-scale effects

Underwater noise thresholds per country leanwind

Source: WindEurope

Measured underwater noise levels at fixed offshore wind substructures – Belgium

Source: Environmental impacts of offshore wind farms in the Belgian part of the North Sea, Degraer Steven

Overview of noise mitigation measures

Noise mitigation measures											
Country	Exclusion zone	Acoustic Deterrent Devices	Seasonal restrictions	Soft start	Noise threshold	Passive acoustic monitoring					
Belgium		Х	X	Х	185 dB SEL at 750m	X					
Denmark		X		X	183 dB SEL						
Germany		X		X	160 dB SEL - 190 dB SPL at 750m	X					
The Netherlands		X	X	X	160 dB SEL - 172 dB SEL at 750m						
The United Kingdom	X	X		X		x (incl. MMOs)					

Source: Underwater noise caused by pile driving. Impacts on marine mammals, regulations and offshore wind developments, Pondera Consult, 2014.

Noise Mitigation Measures Applied at GWYNT Y MÔR Offshore Wind farm - UK

Combination of mitigation measure applied, established through the Conditions of the Marine Licence:

- Piling restrictions in sole spawning periods
- Noise modelling at consent application stage
- Noise measurements on first piling
- Marine mammal observers
- Soft start piling
- Acoustic deterrent devices used
- Onshore noise monitoring

Noise potential reduction of different mitigation techniques—used mostly in Germany – very strict noise levels! leanwing

Source: Development of Noise Mitigation Measures in Offshore Wind Farm Construction 2013, Federal Agency for Nature Conservation (Germany).

Noise mitigation - Bubble curtain

Community engagement strategy

- Community benefit for onshore wind received positively, transfer of the experience to offshore?
- However, differences in identifying nearby communities, maturity of the industry, technology and project economics?

Providing Information

• 1 way information to targeted stakeholders.

Engaging local communities

• 2 way interaction: dialogue & exchange of views.

Innovative Financing / Benefit sharing

Partnership models.

Community engagement

An example of supporting local development: Gwynt y Môr (576MW)

- Community fund: £19 mln over 25 years
 - Privately funded grant and loan scheme
 - Fully flexible fund objectives
- Tourism fund: £690,000
 - Facilitating pier upgrade for cruise liners
 - Achieving blue flag status for beach
- RNLI partnership: £3.8 mln
 - 5 year partnership to support lifeguards

Source: RWE Innogy

Co-ownership

Conclusions

- Well documented positive impacts of offshore wind farms,
- All types of foundations have an environmental impact but recovery from these effects is expected within the lifespan of the windfarm project,
- Several mitigation solutions available for underwater noise but bear in mind the costs,
- Community engagement and benefit sharing are core aspects of a successful social acceptance strategy.