

How to reduce maintenance costs by means of innovative lifting solutions?

1st Stakeholders Showcase Event 08/09/2016

Nicolas Degand

Ole Jacob W. Nielsen HighWind

Project supported within the Ocean of Tomorrow call of the European Commission Seventh Framework Programme

Service and Maintenance in the Offshore & Wind Industry

Company Profile

SITE INVESTIGATION

Company Profile

Meet the fleet

GeoSea

OWA, partner in the LEANWIND project

OWA involved in work packages 2 to 9

WP1

- WP2
 Construction, Deployment & Decommissioning
- WP3Novel Vessels & Equipment
- WP4Operation & Maintenance
- WP5Integrated Logistics
- WP6System Integration
- Testing and validation of tools & technologies
- WP8Economic & Market Assessment
- WP9Dissemination and Exploitation

WP10

Offshore Wind Challenges & Trends

O&M Challenges & Trends

- OWF farther from shore:
 - Focus on remote monitoring
 - Reduced more efficient site visits
- Larger projects:
 - Economies of scale
 - Reduced risk adversity
- Larger turbines:
 - Higher downtime costs
 - Heavier components
 - More capable O&M vessels
- Higher availability:
 - Technology Innovation
 - Expected increased reliability
- Deeper waters
 - Floating solutions being developed
 - Need for larger jack-ups

O&M Cost breakdown and cost levers

Novel Lifting Equipment

some examples

Boom Lock System

Turbine installation, a seasonal activity?

Turbines have grown fast

Giant leaps are being made in turbine & blade development

Blade size has grown from 45 to 90 meter – Single blade installation is standard A solution is needed to uphold <u>current</u> workability limits

Lifting operations: analysis

Wind Sensitivity vs. Controllability

- Load is free to move
- Wind is variable in direction and magnitude
- Object orientation cannot be changed in all directions while installing
- Installation requires careful communication, continuous iteration & correction & a lot of experience
- → Increasing controllability results in: DECREASED DOWNTIME DECREASED RISK OF DAMAGE INCREASED SAFETY

Downtime due to lifting: is it worth anything?

- Improvements in jack-up vessels have pushed weather down-time back to the lifting operation
- 80-90% of Weather Downtime now relates to lifting operations
- As much as 23,7% time can be saved during Summer installation
- As much as 32,3% time can be saved during Winter installation

Souce: BVG Associates

The weakest link: lifting operations

- Weather downtime and installation risk is under pressure
- Installation tools and methods remain sensitive to wind and crane motions
- A NEW FUTURE PROOF SOLUTION IS REQUIRED

Finding a solution: The High Wind 'Robot'

How to 'robotize' WTG installation?

- 6 Degree of freedom control is required
- Needs to work with all components
- Low impact on vessel capabilities
- Make use of experience built up
- Low threshold for implementation and operation

→ CONCEPT???

Target

- ✓ Safer
- ✓ More control
- ✓ Less Downtime

"Boom Lock" concept

The Boom Lock is a tool that allows an offshore crane to install WTG components in high wind speeds

- Improved stability & control
- All turbine components and parts
- Works with any lifting tool
- Easy to operate
- Short installation time
- No hinder to non-WTG operations

The "Boom Lock"

All turbine components and parts, all turbines

- Large heavy objects with large inertia make will **not stop moving.**
- Actions of the crane cause unwanted and **potentially dangerous** motion of crane and load
- → BOOM LOCK SYSTEM BRINGS MAJOR BENEFITS FOR ALL TURBINE COMPONENTS

First project finalized

Installation of turbines at Kentish Flats

- 15 x 3.3 MW V112 turbines
- 45 x blades + 15 nacelles
- Vattenfall, MHI Vestas and GeoSea joined hands in supporting this new technology
- High Wind provided training, support and data logging

Kentish Flats: conclusions

Successful first project finalized

- The Boom Lock lived up to its expectations (however limited to <12 m/s due to the blade yoke design)
- Proven to be technically reliable
- Increased safety for installation
- New technology was adopted fast

→ NEXT STEPS

- → Simulations of larger blades sizes in higher wind speeds
- → Offshore trails with new blade yoke designs

QUESTIONS?

Thank you very much for your attention