

Logistic Efficiencies And Naval architecture for Wind Installations with Novel Developments

Project acronym: LEANWIND Grant agreement nº 614020 Collaborative project Start date: 01st December 2013 Duration: 4 years

D7.2 Case study validation of combined financial and logistics tools

Lead Beneficiary: University College Cork Due date: 30 November 2016 Delivery date: 23 November 2017 Dissemination level: RE

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 614020.

Disclaimer

The content of the publication herein is the sole responsibility of the authors and does not necessarily represent the views of the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other participant in the LEANWIND consortium make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the LEANWIND Consortium nor any of its members, their officers, employees or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the LEANWIND Consortium nor any of its members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused by or arising from any information advice or inaccuracy or omission herein.

Version	Date	Description			
			Prepared by	Reviewed by	Approved by
V1	25/10/2017	Name/ Organisation	F. Judge (UCC), K. Lynch (UCC)	L. M. Nonås (SINTEF Ocean) J. Giebhardt (IWES)	
V2	23/11/2017		F. Judge (UCC), K. Lynch (UCC)		Jan Arthur Norbeck (SINTEF Ocean)

Document Information

Author(s) information (alphabetical):				
Name	Organisation			
Iver Bakken Sperstad	SINTEF			
Fiona Devoy McAuliffe	University College Cork			
Elin Espeland Halvorsen-Weare	SINTEF Ocean			
Brian Flannery	University College Cork			
Chandra Irawan	University of Portsmouth			
Dylan Jones	University of Portsmouth			
Frances Judge	University College Cork			
Katie Lynch	University College Cork			

Acknowledgements/Contributions:				
Name	Organisation			
Negar Akbari	University of Portsmouth			
Graham Wall	University of Portsmouth			

Definitions					
CAPEX	Capital Expenditure				
CPU	Computation Time				
CTV	Crew Transfer Vessel				
DCM	Decommissioning				
DECEX	Decommissioning Expenditure				
DSS	Decision Support System				
EIS	Environmental Impact Statement				
FEED	Front End Engineering Design				
GIS-T	Geographical Information System for Transport				
HLV	Heavy Lift Vessel				
IntDis	Decommissioning recycling and landfill centres				
IRR	Internal Rate of Return				
KPI	Key Performance Indicator				
LB	Lower Bound				
LCA	Life Cycle Analysis				
LCOE	Levelised Cost of Energy				
LIVO	LEANWIND Installation Vessel Optimiser				
NPV	Net Present Value				
0&M	Operation and Maintenance				
OPEX	Operational Expenditure				
OWF	Offshore Wind Farm				
PIns	Port Installation Logistics Model				
PortDis	Decommissioning Port Selection				
PortLay	Port Installation Layout model				
PortOM	O&M Port & Base Selection				
PTPIns	Component transport installation phase model				
SES	Surface Effect Ship				
SOV	Service Offshore Vessel				
UB	Upper Bound				
VMINS	Installation Vessel Mix Installation Model				
VMOM	O&M Vessels & helicopters				
WP	Work Package				
WTG	Wind Turbine Generator				

Executive Summary

The following report summarises the validation activities carried out on the two sets of analysis models developed in LEANWIND i.e. the logistics models and the financial models. The models have been developed as complementary models to be used by various stakeholders as decision support tools in offshore wind farm project planning and design. The combined use of these sets of models are described in LEANWIND Deliverable 8.3: Integrated Financial and Logistics Model.

The logistics models provide optimised solutions for supply chain and logistics in each of the three primary project phases (installation, O&M and decommissioning) and in each of the three primary supply chain phases (transport to port, at port and transport from port to site). The models provide the best solution for a given set of options for an offshore wind farm project e.g. the best O&M port, vessel fleet, transport routes etc. for given turbine, foundations and project location. Due to the nature of these models, validation in the more traditional sense is challenging, as the optimum solution is not easily 'proven'. The models scope and assumptions were developed with input from industry including through feedback at specific LEANWIND events. After system testing and "de-bugging" on an individual level, a sample LEANWIND case study was used to run through the full suite of models in order to sense check the logic and results from the use of the combined models. This was thoroughly described in LEANWIND Deliverable 5.7: Holistic Supply Chain Optimisation Model.

In contrast, the financial model comprises of three simulation-based modules, which can more readily be validated through the application of theoretical and real case studies; through comparison with other financial models; and through sensitivity analysis of specific parameters allowing given output parameters to be used as KPIs for comparative purposes. The three modules address the installation, O&M and decommissioning phases and as such, each module was validated independently as well as the financial model as a whole.

The models were all validated successfully with reasonable comparison to case study data and other models and with significant input from industry on the model input data, assumptions and output data checks.