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Executive Summary 
 

This report describes the development of reliability, maintenance and logistics models 

and methodologies in LEANWIND Tasks 4.3 ("Reliability based design implications") 

and 4.2 ("Strategy optimisation").  

 

The first step in optimising the O&M strategy of a wind turbine is the identification of 

its most critical components. The term "critical components" refers to the most 

vulnerable and crucial parts that are critical to the life-cycle and the maintenance plan 

of a wind turbine. The identification of critical components usually derives from the 

calculation of the risk of a potential failure, and therefore, the unavailability of the 

related sub-system or the entire wind turbine. In order to arrive at a list of critical 

components for a wind turbine of 8MW rated power, three types of methodologies 

were applied in Task 4.3. Firstly a literature survey was conducted, an analysis based 

on a RAMS approach was implemented and finally an experts’ group judgement 

approach has been introduced, which is included in the appendix session, to be used 

whenever experts’ opinions are available. 

 

The databases examined in the literature survey refer to a mixed population of 

offshore and onshore wind turbines of varying rated power outputs. The time span of 

each database varies accordingly. Also some provide extra variables and components 

which can be introduced into the model as constraints or parameters that will affect 

the final categorization of critical components of a wind turbine. Based on the 

literature survey, a number of lists with critical components identification and criticality 

ratings are presented, which in part can be used as input to the O&M optimisation. On 

the whole, it is becoming quite clear that different methodologies lead to different 

ratings and categorisation of criticalities and components. 

 

An extensive study and analysis based on the FMECA approach is presented, providing 

failure rates and downtime periods for existing wind farms, as well as a criticality 

ranking based on different sources. In addition, a raw trend analysis has been 

implemented in order to predict failure rates and downtimes for 5 MW and 8 MW wind 

turbines. Furthermore, a probabilistic analysis is performed, based on RAMS 

methodology, to estimate availability for large wind turbines. In addition, a distinction 

between wind turbine availability and wind farm system availability has been 

presented, to demonstrate the variations that may occur in the evaluation of the 

availability, according to the methodology used. 

 

Degradation models are used in order to predict deterioration in certain components 

and sub-assemblies (mainly structural). Lastly, it is explained how degradation models 

will be integrated to the O&M strategy optimisation analyses via a risk based 

methodology. 

 

In Task 4.2, the LEANWIND O&M strategy model has been developed. This is a 

strategic decision support tool designed for aiding stakeholders in selecting the 

optimal maintenance and logistics strategy for offshore wind farms. The development 

links to LEANWIND WP8 "Economic and Market Assessment", where this model will 



form the basis of the OPEX module of the LEANWIND full cost model and it will thus 

contribute in validating (by evaluating the costs and benefits) other innovations 

developed in the LEANWIND project. 

 

The use of the O&M strategy model is demonstrated in three case studies with 

relevant decision problems for an offshore wind farm owner/operator: 1) Timing of 

jack-up vessel campaigns for heavy maintenance, 2) size and composition of crew 

transfer vessel (CTV) fleet, 3) timing of annual service campaigns. 

 

These case studies are carried out for a LEANWIND reference wind farm consisting of 

125 8 MW turbines with metocean conditions corresponding to West Gabbard. In the 

analyses, an optimal O&M and logistics solution is defined as the solution that 

minimises the sum of (direct) O&M costs and lost revenue due to downtime, i.e. 

maximising profit and having the optimal trade-off between costs and wind farm 

availability. 

 

Focusing on case study (1) on jack-up vessel campaigns, results indicate that pre-

chartering jack-up vessels for a set of campaign periods is a competitive strategy. Even 

if wind farm availability may become higher when chartering jack-up vessels as soon 

as the need arises ("fix-on-failure"), this may be offset by much higher charter costs 

than if having a smaller number of pre-determined campaigns. The competitiveness of 

such strategies over conventional fix-on-failure strategies is strengthened if the wind 

farm is large (e.g. 125 turbines or more) and if lower jack-up vessel day rates can be 

assumed for the charter strategy. Strategies with 3 campaign months spread evenly 

over the year were generally found to be advantageous, but exactly which months are 

optimal is likely to depend on the metocean conditions. As much as 4 campaign 

months could also be advantageous assuming high revenue per MWh produced 

and/or relatively high failure rates. For smaller farms (80 turbines) and lower rated 

power (5 MW) alternatives with two campaign periods, e.g. one month in spring and 

one month in the autumn, would be a better solution. 

 

The results substantiate that optimising the jack-up charter strategy and optimising the 

CTV fleet composition both offer substantial economic potential for the wind farm 

owner/operator. There was also a smaller but still significant potential for increasing 

profitability by starting annual service campaigns in late spring rather than earlier. We 

identified a risk of selecting sub-optimal strategies if not viewing different decision 

problems as a whole: Less robust vessel fleets might not have the capacity to 

complete all annual services in time, and with a more robust vessel fleet one can 

concentrate the annual service campaign in the summer months where the expected 

downtime losses are lowest. 

 

The problem of jack-up vessel charter optimisation is associated with much larger 

variability in results since failures requiring heavy maintenance and jack-up vessels 

are much rarer but have much higher impact than failures requiring only CTVs. 

Therefore, there is less certainty for a wind farm operator that the jack-up vessel 

campaign strategy with the best expected (average) profitability actually turns out to be 

the most profitable solution for that particular wind farm over the particular years it is 

operational. 

 


