

Logistic Efficiencies And Naval architecture for Wind Installations with Novel Developments

Project acronym: **LEANWIND** Grant agreement nº 614020 Collaborative project Start date: 01st December 2013 Duration: 4 years

D8.3: Integrated Financial and Logistics Model WP8: Economic and Market Assessment

Lead Beneficiary: University College Cork Due date: 31st September 2016 Delivery date: 26th October 2017 Dissemination level: CO (Confidential)

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 614020.

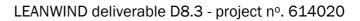
Disclaimer

The content of the publication herein is the sole responsibility of the authors and does not necessarily represent the views of the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other participant in the LEANWIND consortium make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the LEANWIND Consortium nor any of its members, their officers, employees or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

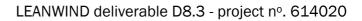
Without derogating from the generality of the foregoing neither the LEANWIND Consortium nor any of its members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or damage caused by or arising from any information advice or inaccuracy or omission herein.


Document Information

Versio n	Date	Description			
			Prepared by	Reviewed by	Approved by
V0.1 In	27/07/2017	Internal Review	K. Lynch, F. Devoy McAuliffe, I. Bakken Sperstad, Rachel Chester	K. Lynch	
V0.2 In	29/09/2017		K. Lynch, F. Devoy McAuliffe, Rachel Chester		K. Lynch
	12/10/2017	Technical Review		Jochen Giebhardt (Fraunhofer IWES) Yeganeh Attari (GDG)	
V0.3 In	20/10/2017		K. Lynch, F. Devoy McAuliffe, Rachel Chester		
		PMT Review	K. Lynch, F. Devoy McAuliffe, Rachel Chester	Jan Arthur Norbeck	
V0.4 In					Jan Arthur Norbeck
V1		FINAL	K. Lynch, F. Devoy McAuliffe, Rachel Chester		

Author(s) information (alphabetical):				
Name	Organisation			
Katie Lynch	UCC			
Rachel Chester	UCC			
Fiona Devoy McAuliffe	UCC			

Support by:



Contributions				
Name	Organisation			
Brian Flannery	UCC			
Dylan Jones	UOPHEC			
Iver Bakken Sperstad	SINTEF ER			
Chris O'Donoghue	UCC			

Definitions

Abbreviation	Full Term
CfD	Contract for Difference
Dx.x	Deliverable
FEED	Front End Engineering Design
FID	Financial Investment Decision
IRR	Internal Rate of Return
LCOE	Levelised Cost Of Energy
NPV	Net Present Value
0&M	Operation and Maintenance
OWF	Offshore Wind Farm
R&D	Research and Development
WP	Work Package

Support by:

Executive Summary

The following document provides an outline of the structure and intended use of the logistic and financial models such that a potential user can understand clearly the capabilities of the models and how to use them effectively, independently and in conjunction.

The logistic models consist of a set of mathematical algorithms capable of optimising the holistic Offshore Wind Farm (OWF) supply chain for the three project phases: installation; operations and maintenance; and decommissioning. The models address the logistic challenges related to transportation from port to the OWF site; transportation to coastal base ports; as well as the selection of suitable ports by identifying capabilities and requirements of the ports for each stage of the OWF project.

The financial model is an excel cash flow sheet with a number of user data entry sheets and output sheets. This over-arching financial model then interacts with a number of dedicated time series simulation modules, which calculate the cost and duration of activities in the project phases: installation, operations and maintenance (O&M) and decommissioning. These three modules can also be used as stand-alone models. The financial results are then used to populate an investment risk analysis module using @Risk software. The outputs from the models can then be used as input to environmental Life Cycle Assessment models being developed in Task 8.4.

The LEANWIND logistics and financial models are non-proprietary and therefore unbiased, independent assessment tools for use by numerous potential users. Expected users are outlined in more detail in section 4. The intention is to be useful to users ranging from students and academics to industry funding bodies and project or technology developers.

The capabilities of the supply chain logistic and financial models are timely with the recent industry and international commitments to reduce costs in the Offshore Wind sector. In particular, this is evidenced by the DONG Energy recent HornSea bid (September 2017) of ± 57.5 /MWh which is more than 50% less than the bid for the first phase of the same farm only 2 years ago (± 140 /MWh).¹ These latest Contract for Difference (CfD) contracts in the UK showed that Offshore Wind is now cheaper than new gas projects.²

These models will be validated together to provide a starting point for the work in Task 7.4; to assess the innovations developed in the LEANWIND project.

¹ <u>https://uk.reuters.com/article/uk-britain-renewables-dong-energy/denmarks-dong-wins-uk-contract-to-build-worlds-largest-offshore-wind-farm-idUKKCN1BM0R1</u>

² https://www.carbonbrief.org/analysis-uk-auction-offshore-wind-cheaper-than-new-gas

