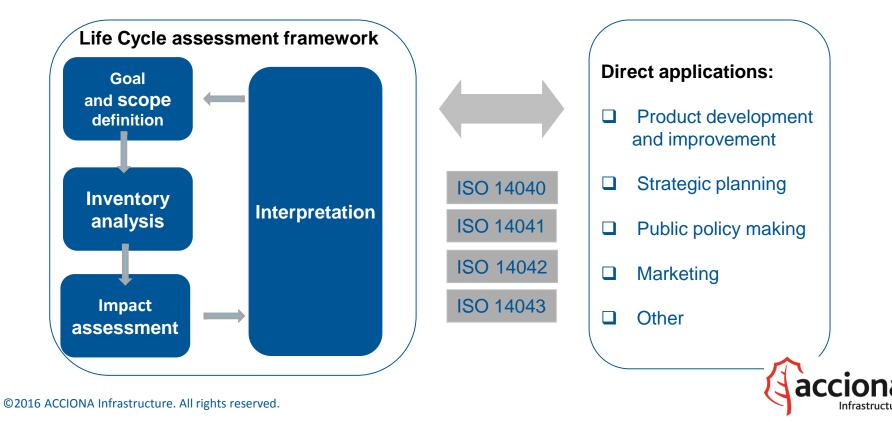


Life Cycle Assessment

Assessing local impacts

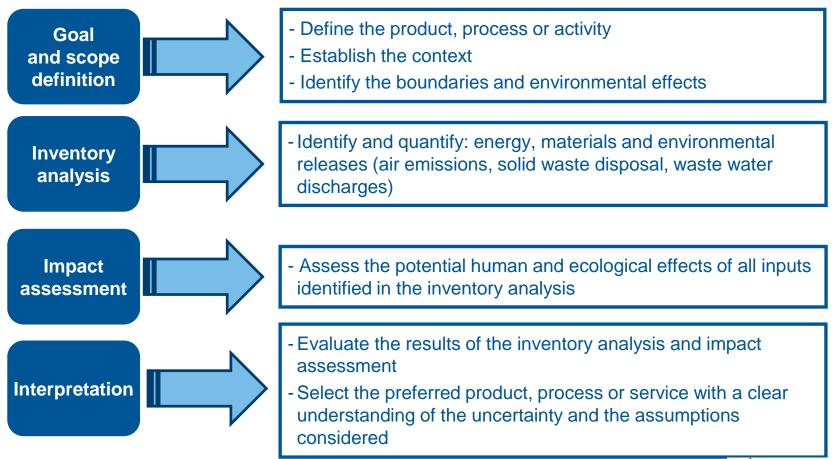
María del Mar Pintor MsC Civil Engineer

The research leading to these results has received funding from the European Union Seventh Framework Programme under the agreement SCP2-GA-2013-614020.


leanwind

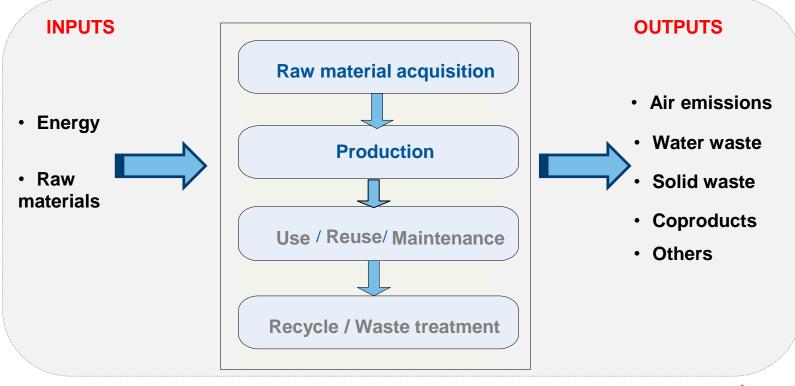
1. INTRODUCTION

1.1 LCA METHODOLOGY


- LCA is a standardized technique to assess the environmental aspects and potential impacts associated with a product, process, or service.
- The LCA process is a systematic, phased approach and consists of four components

1. INTRODUCTION

1.1 LCA METHODOLOGY



1. INTRODUCTION

1.2 LIFE CYCLE STAGES

LCA is a "cradle-to-grave" approach for assessing innovative processes or products

2. LCA TOOL. GABI 6 SOFTWARE

- Provided by PE International, in collaboration with IKP University of Stuttgart
- The program incorporates its own database with information of many processes
- It includes Ecoinvent, GaBi and ELCD databases (update 2016)

GaBi 5							
ase de datos Editar Extras Visualizar Ayuda							
🗋 🥩 🗙 🔖 🗈 🗊 🗊 🖉	2 🗇 🥐				-		
rarquía de los objetos	Nación Nombre Tipo /	Abn 🗎 🛛 Fuente	Ultima modific	ación			
GaBi 5	Asphalt				1 / 5		
 → Balances → Plans 	DE Asphalt pavement agg technology mix production mix, at plant 2400 kg/m3	💕 PE					
Processes Processes Processes Processes Processes Processes	DE Asphalt supporting layer agg technology mix production mix, at plant 2350 kg/m3	💕 PE	01/11/2011				
Construction industry Pinder	DE Asphalt binder agg	💕 PE	01/11/2011				
Brick Building services engineering		P DE: Asphalt pavement PE [Asphalt] BD Proceso					
Coatings Construction materials Additions Asphalt	Objeto Editar Visualizar Ayuda	2 🔿		.	agg - Resultado de		
Binder	Parámetros						
 EoL construction materials Mortar and concrete Stones and elements 	Parámetro Fórmula Parámetro	Δ. V	'alor Mínimo	Máximo Desviaci Co	ment.		
	ACY SACE -0,162 EUR ACTT Do Integridad All relevant flows recorded	cumentación					
🕸 Plaster	Entradas						
🗉 📑 Plastics	Flujo Magnitud	Cantidad	Unidad MaDesvi	aci Origen	Comentario		
Plastics (construction)	Recycling goods [Waste for recovery] 🙈 Mass	78	kg * 0%	(Ningún dato)			
Window and facade components	Air [Renewable resources] 🍰 Mass	212	kg 0 %	(Calculated)			
🕀 📑 Wood	Antimony [Non renewable elements] 🍰 Mass	1,29E-009	kg 0 %	(Ningún dato)			
🕀 📑 Disposal	🛹 Barium sulphate [Non renewable reso: 🙈 Mass	1,79E-014	kg 0%	Literature			
Ecoinvent	Basalt [Non renewable resources] 🏻 🎄 Mass	2,35E-005	kg 0 %	Calculated			
	⇒ Bauxite [Non renewable resources] A Mass	0,000787	kg 0 %	(Literature)			
Energy conversion Ø Antiperson Antiperson Ø Antiperson	Bentonite [Non renewable resources] 🏯 Mass	0,104	kg 0 %	Literature			
A PlasticsEurope	Biotic Production [Transformation]	duction 0,00545	kg/a 0 %	Literature			
Production	Salidas						
Recovery		Cartel	Unided Male 1		Concentrate		
🕀 🏥 Repairing	Flujo Magnitud	Cantidad	Unidad MaDesvi		Comentario		
	Asphalt pavement, integrated [(🎄 Mass	1E003	kg X 0%	(Ningún dato)			

GaBi Software

3. CASE STUDY

3.1 SCENARIOS

DESIGN SCENARIOS						
	Site co	nditions	Ground conditions			
Design case	Water depth (m)	Distance to Port (km)	Shallow bedrock	Medium dense sand		
0	20	30	×	×		
1	40	30	Gravity bases	XL Monopiles Gravity Bases		
2	60	100	Lattice Structures Gravity Bases	Lattice Structures Gravity Bases		
3	100	30	×	Floating foundations		

Si	ite 1	Location	Ground conditions		Foundation installation	Foundation Installation Vessel	Turbine Installation	Turbine Installation Vessel	Turbine Installation Method
		West Gabbard	Shallow bedrock	Gravity base	Float-out	3 tugs + 1 AHT + 1 support vessel	Installed separately	Jack-up	Bunny ears with 2 part tower

3. CASE STUDY

Data gathering from results of WP2

Front view section foundation detail Scour Bedding protection layer 37 70 Front view foundation detail 8 a

Dimensions in meters

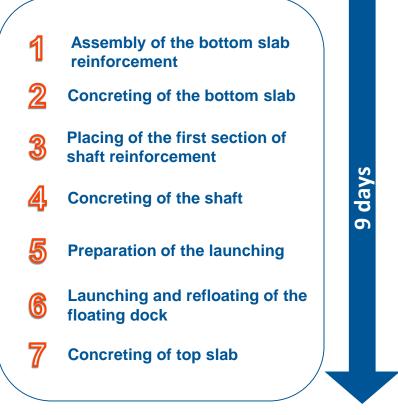
3.2 FUNCTIONAL UNIT

- Reference product: Gravity Base Foundation
- Function: Support of 8 MW Wind Turbine

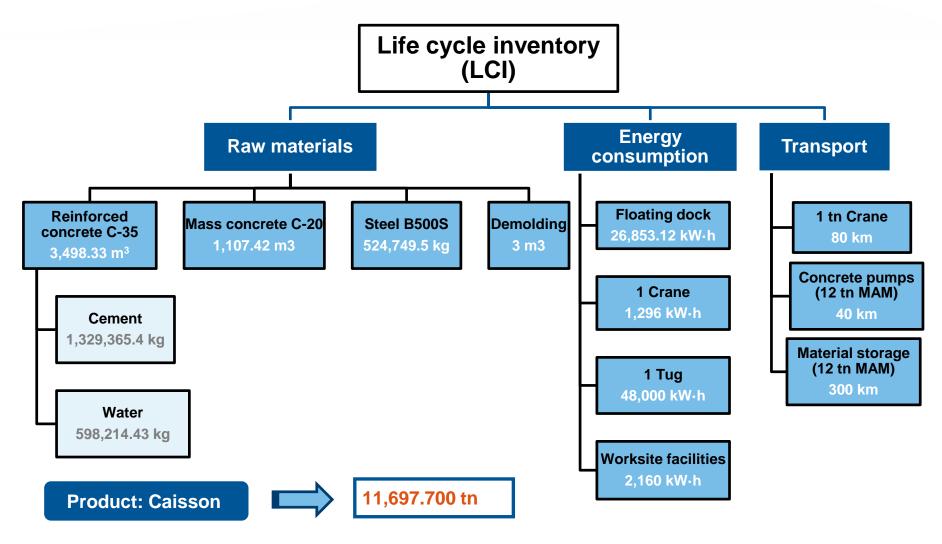
Geometry

Bottom slab	28 m diameter		
Shaft	20 m height		
Footing	31 m diameter, 1 m thickness		
Transition piece	24 m height; 8 m diameter; 75 mm thickness		
Outer perimetral wall	50 cm thickness		
Inner perimetral wall	30 cm thickness		
Radial wall	25 cm thickness		
Inner cylinder	1 m thickness; 8 m diameter		


Composition


Concrete volume HA-35	3,498.33 m ³
Steel quantity B500S	524,749.5 kg

3.3 PRODUCTION PROCESS



©2016 ACCIONA Infrastructure. All rights reserved.

4. INPUTS TO BE GATHERED. LCI

leanwind

©2016 ACCIONA Infrastructure. All rights reserved.

5. SIMULATIONS AND LCA RESULTS

- LCA in 2 stages:
 - Stage I: Installation and mobilization of equipment
 - Stage II: Caisson construction
- Software tool: GaBi 6
 - Legislation: EN15804 (Sustainability of Building Materials)
 - Methodology: CML2001

Environmental impacts	Stage I	Stage II	Units
·	Value	Value	
Global Warming Potential (GWP 100 years)	485	1250000	[kg CO2-Equiv.]
Acidification Potential (AP)	2,03	2360	[kg SO2-Equiv.]
Photochem. Ozone Creation Potential (POCP)	-0,68	326	[kg Ethene-Equiv.]
Eutrophication Potential (EP)	0,51	275	[kg Phosphate-Equiv.]
Primary Energy Demand (PED)	6680	8270000	[MJ]

Conclusions

Comparison with XL Monopile

The research leading to these results has received funding from the European Union Seventh Framework Programme under the agreement SCP2-GA-2013-614020.

©2016 ACCIONA Infrastructure. All rights reserved.

Thank you very much for your attention