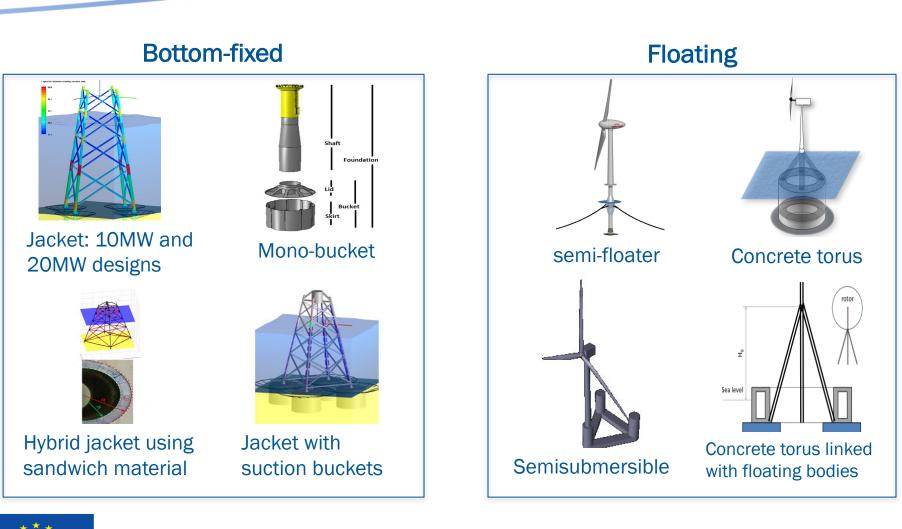


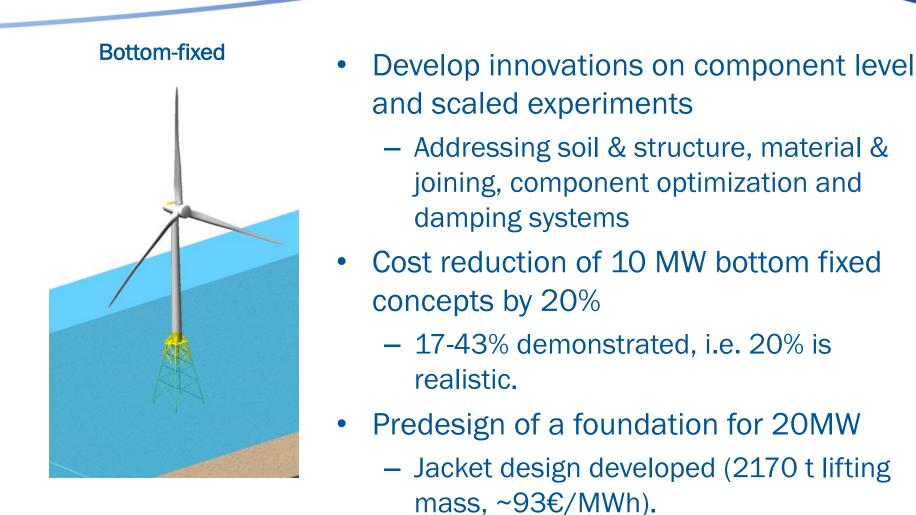
Cost Effective Fixed and Floating Substructures


Martin Kühn

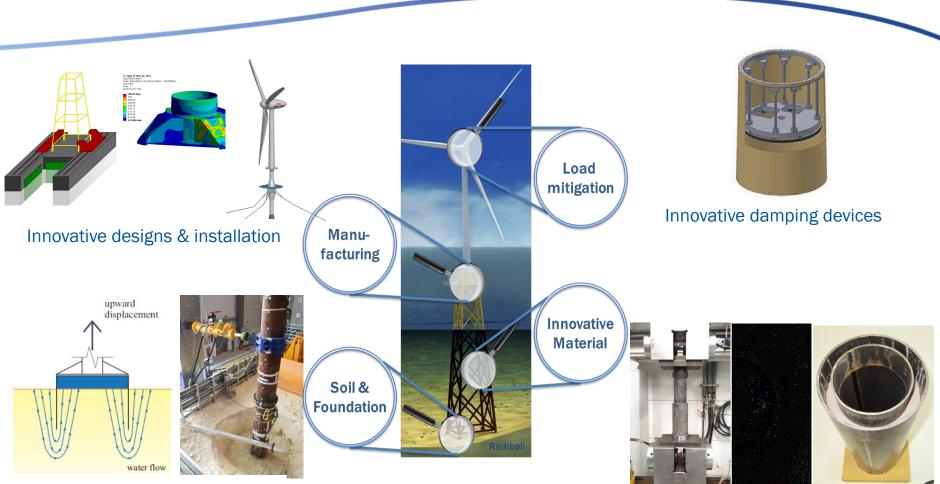
WP4 Co-Leader

ForWind – University of Oldenburg

WindEurope, Amsterdam, 30th November 2017


Support Structure Concepts

INN WI


Main Objectives for Bottom-fixed Structures

3

WP4 Achievements – Bottom-fixed Structures

Sandwich materials and testing

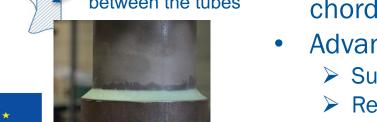
INN W

Innovative foundations: Buckets and vibro driven piles

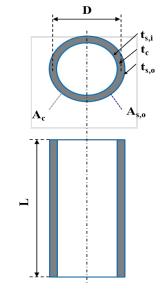
Resulting in a various bottom mounted design solutions for 10 and 20 MW wind turbine size

5

Example: Innovative Materials


- Sandwich tubes for chords and braces of the hybrid jacket
- Advantages:

Thin steel tubes made of high strength steel without stability issues or reduced quantity of steel Reduced manufacturing time of steel tubes due to their small thickness



Sandwich tube

Steel connector between the tubes

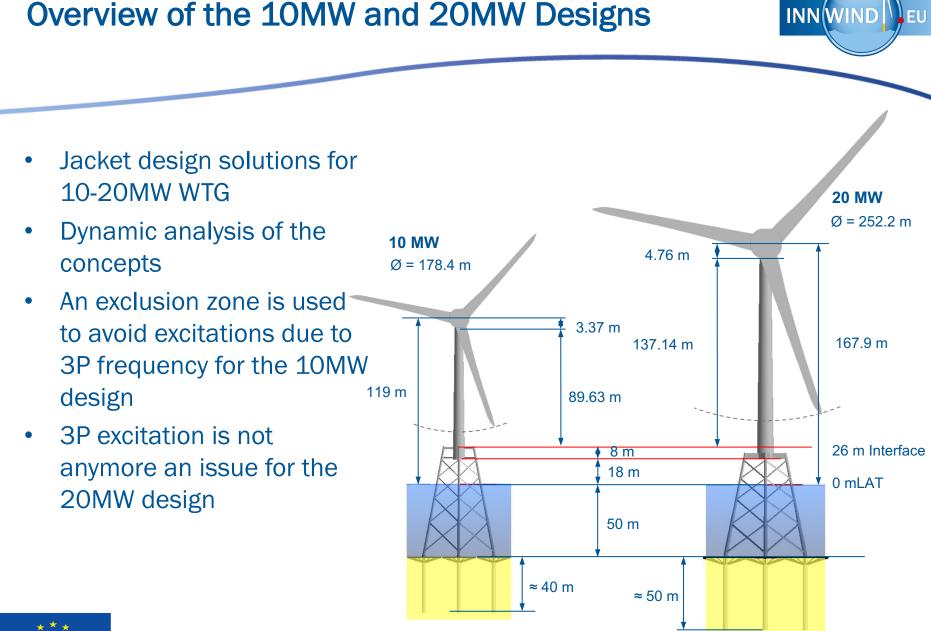
- Adhesive hybrid joints connecting chords and braces of the hybrid jacket
- Advantages:
 - Suitability with sandwich tubes
 - Replacement of time and cost consuming welding

INNW

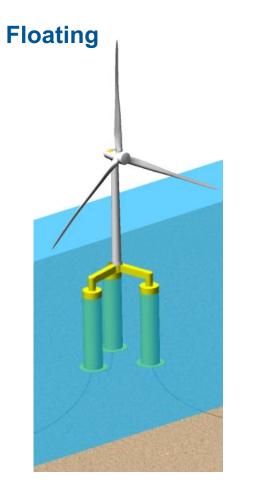
Example: Innovative Foundations Buckets and Vibro-driven Piles

- Results
 - Reduced capacity in comparison to impact-driven piles
 - Significant set up effects
- Outlook
 - Extensive investigation on the influence of the penetration rate
 - Pile capacity under compression

Pile 1; end of the installation

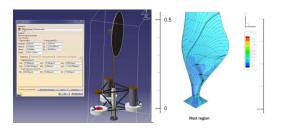

CPT campaign

Pile 1; pre-loading stage



* * * * * * *

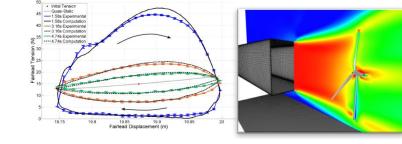
Main Objectives for Floating Structures



- Validate numerical tools using wave tank experiments
 - Addressing TLP and semi-sub in two wave tank tests.
 - Results public available.
- Develop reference floater designs for 10MW
 - Design of the "Triple Spar" floating support structure.

WP4 Achievements – Floating Structures

Development of methods and codes


ESC

Methods for scaled tests

-ww

Experiments: TLP, Semi-submersible, moorings, rotor

Code validation with experiments

Brushles

moto

Ducte

Full Scale Simulation

Resulting in a various floating design solutions for 10 MW wind turbine size

Grid

supply

Arduino Mega

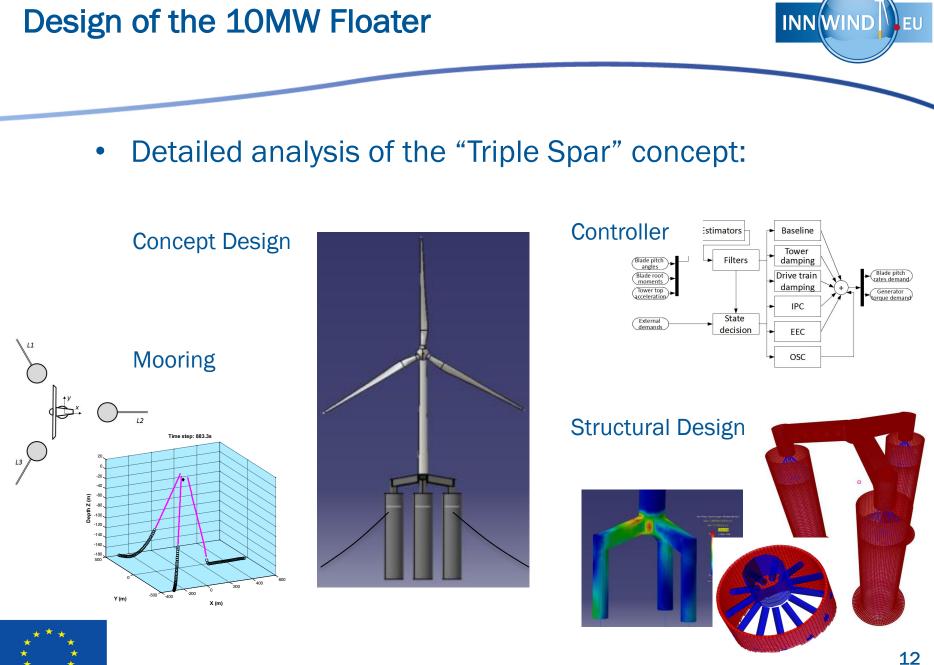
Floating Offshore Wind Turbine Experiments INN(WIN Test Campaign **ECN Campaign ECN Campaign** DHI #2 2-52-52-**Model Tested** TLP Mooring Semisubmersible Semisubmersible Air flow dynamics Low Reynolds **HybridTesting** Low Reynolds Rotor (SiL) Rotor Codes Validated **Dynamic** Aerodynamic **Integrated codes** Mooring CFD Hydrodynamic codes CFD

Floating Offshore Wind Turbine Experiments

Database with INNWIND.EU experimental data:

Name*		
First name*		
E-Mail*		
Institution/Company*		
Selection*	Industry	
Application*	Software validation	•
Country*		
How did you get to know about INNWIND.EU wave tank measurements?*	Website	•
	Alle Eingabefelder, die mit einem Stern (*) versehen sind, sind	d Pflichtfelder
	Senden Zurücksetzen	

Index of /windenergie/innwind/DataBase


INN

_	Name	Last modifie	d	Size	Description
2	Parent Directory			-	
	CalibrationFunctions/	15-Apr-2015	15:00	-	
	CollectedData/	15-Apr-2015	15:00	_	
	DataBase.zip	17-Apr-2015	15:04	3.8G	
2	DataIndex INNWIND ECN1409.xlsx	02-Apr-2015	15:46	93K	
Ð	INNWINDExportData.m	15-Apr-2015	14:59	2.3K	
ľ	INNWINDPlotTestData.m	15-Apr-2015	14:59	4.1K	
Đ	INNWINDReadData.m	15-Apr-2015	14:59	8.0K	
Ð	INNWINDReadDataIndex.m	15-Apr-2015	14:59	6.8K	
	ReadASCIIFile.m	15-Apr-2015	14:59	1.0K	
Ð	ReplaceString.m	15-Apr-2015	14:59	1.5K	
	figures/	15-Apr-2015	15:00	0 <u>05</u> 6	

Apache Server at www.ifb.uni-stuttgart.de Port 80

(http://www.ifb.uni-stuttgart.de/windenergie/download_messdaten.html)

10MW Triple Spar Geometry

Main properties:

Mass	Platform mass	2.82e7 kg
IVIASS	Ballast mass	17 264 t
	Columns length	65 m
Main dimensions	Columns distance to the center	26 m
	Columns diameter	15 m
	Draft	56 m
	Steel price	4 000 €/t
	Concrete price	236 €/t
Cost	Ballast price	70 €/t
	Tripod cost	3.885e6 €
	Total platform cost	1.029e7 €

- Natural frequencies out of main wave spectrum energy range
- Design validation based on fully coupled simulations
- Moderate maximum pitch: 8.9°
- Structural design based on extreme loads
- Maximum tensions at mooring lines below breaking limit
- Successful control design for floating concept

Natural frequencies:

DoF	Td [s]	fd [Hz]
Surge	166	0.006
Sway	166	0.006
Heave	16.8	0.059
Roll	25.5	0.039
Pitch	25.5	0.039
Yaw	99.65	0.010

Summary of Outcomes

- Reference and evolutionary designs of 10MW and 20MW RWT models (different foundation concepts).
 - Various concepts studies
 - Hybrid jacket,
 - Reference jacket 10/20MW,
 - Reference floater 10MW
- Life-time extension of wind turbine & support structures as a result of integrating new innovations.
- Conducted experimental setups:
 - Hybrid joints and sandwich materials for the jacket and tower
 - Wave-tank tests for floating 10MW RWT
 - Suction bucket measurements for 10MW mono bucket
- More information on the INNWIND website: http://www.innwind.eu/work-packages/work-package-4
- Publications:
- <u>http://www.innwind.eu/publications</u>

INN

